运算律教学总结10篇

| 小淇

运算律是通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。既是重要的数学规律,也是数学运算固有的性质。下面小编给大家带来关于运算律教学总结,希望会对大家的工作与学习有所帮助。

运算律教学总结10篇

运算律教学总结1


本节课主要内容是加法的交换律和结合律,并且孩子们刚学完四则运算,对四则运算已有较多感性认识。本节课我是以孩子们最熟悉的体育大课堂中的体育活动为情境引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。

1.提供自主探索的机会

本节课以学生身边熟悉的情境为教学的切入点,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。通过学生自己提问题,自己解决问题,对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提国自主探索的时间和空间,使学生经理加法运算率产生的形成的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

2.关注学生已有的知识经验。

在学习加法运算律之前,学生对四则运算已有了较多的感性认识,为新知的学习奠定了良好的基础。教学中注意激活学生原有的知识经验,让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、超越。

3.引导学生在体验中感悟数学

教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化运用的认识飞跃,同时也体验到学习数学的乐趣。 不足之处:

1. 在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算律。

2. 安排这两个运算律教学时采用的都是不完全归纳推理,因此在教学加法结合律时也应该让学生多举些列子,让学生去评价举的列子好不好,让学生自己去发现结合是把可以得出整百整十的数放在一起,而不是随意的乱编。然后进一步分析、比较,发现规律,并先后用符号字母表示出发现的规律。

运算律教学总结2

学生从二年级就开始接触乘法计算,对乘法积累了较多的感性认识,这是学习乘法交换律和结合律的基础。对于乘法定律的教学,不应仅仅满足于学生理解、掌握乘法定律和运用乘法定律进行一些简便计算,更重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这才是教学的重点及难点。教学中,通过创设情境,激发学生的学习兴趣,让学生发现问题,提出猜想、进行验证、总结应用的思路进行的。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

1、提供自主探索的机会。

“动手实践、自主探索与合作交流是学习数学的重要方式”。在探索整数乘法运算律推广到小数的过程中,我为学生提供自主探索的时间和空间,使学生在学习活动中获得成功的体验,增强了学习数学的信心。

2、关注学生已有的知识经验。

在学习整数乘法运算律推广到小数之前,学生对整数乘法运算律已有了较多的感性认识,为新知学习奠定了良好的基础。教学中让学生处于探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。

3、引导学生在体验中感悟数学。

教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。

在教学工作中,并对照开学初的计划,我从以下方面加强改进日常教学:

1、注重从学生已有认知基础入手。如:紧密联系整数乘、除法的意义、计算方法、四则混合运算,使学生把整数运算知识迁移到小数运算中来。

2、注意教给学生运用多种计算方法,以培养学生的灵活计算能力。如在简便运算中,让学生分别用竖式计算和用运算律计算,通过比较,让学生认识到这些规律具有的普遍意义,又能对这些知识得到加深理解和牢固掌握。

3、注重培养和提高学生的分析能力和审题能力,能解决小数乘、除法在实际生活中的应用。

4、注重后进生双基的补习,让培优转差落到实处,以提高整体水平。

虽然班级的基础偏差,面临的形势比较严峻,但只要与学生建立良好的师生关系,日常加强题组训练,突破难点,培养起学生学习数学的兴趣,为进一步的学习打下更好基础。

运算律教学总结3

加法的交换律和结合律一课是四年级上册的内容,是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上学习的。学生从小学低年级开始就接触过加法的验算和口算等方面的知识,对此有较多的感性认识,这是学习加法交换律和结合律的基础。教材安排这两个运算律都是从学生解决熟悉的德育教育的情景引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。教材有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律地认识由感性逐步发展到理性,合理地构建知识。

课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动口、动脑积极探究问题,促使学生积极主动地参与“观察比较——举例验证——得出结论”这一数学学习全过程。学生掌握了学习方法,就等于拿到了打开知识宝库地金钥匙。

在教学加法,乘法交换律时,主要是渗透“观察比较——举例验证——得出结论”这一学习方法,这其中要注意方法的科学性,因为学生往往只通过一个例子就轻率的得出规律,这时教师就应该引导学生本着严谨科学的学习态度,只有通过一些的举例,和练习来验证,得出规律,体验不完全归纳的数学方法。

到了加法结合律就要让学生尝试运用这种方法自己去探索规律了。由于加法结合律是本课教学难点。教学中安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你想到了些什么”引发学生由三个例子的共同特征联想到是否具有普遍性。从而得到猜想:是不是所有的三个数相加都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。

本课围绕“观察比较——举例验证——得出结论”这一数学方法展开,从学生的学习情况来看,通过本课的学习不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律引深到加法的结合律知识,显示学生掌握数学方法后产生强烈的学习愿望和热情。这正是老师努力培养学生终身学习必备的能力。

值得一提的是,从循序渐进观察比较,因势利导举例验证,到自然而然结论推出,要充分发挥学生的自主创新,充分引导学生自行归纳,实现了运算律的抽象内化运用的自我和认识飞跃,同时也体验到学习数学的乐趣和成功情感。不能说是这节课的完美之处。

运算律教学总结4

教学目标:

1。使学生经历探索加法运算律的过程,理解并掌握加法的交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2。使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,培养归纳、推理的能力,逐步提高抽象思维的水平。

3。使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

教学重点:

让学生在探索中经历运算律的发现过程,理解不同算式的相等关系,概括运算律。

教学难点:

概括运算律并会运用。

教学过程:

一、创设情境,大胆猜想

师:为了欢迎听课的老师,咱们班同学准备了几束鲜花。

出示图:左边有5束鲜花,右边有4束鲜花,一共有几束鲜花?怎样列式?

生:5+4=9,4+5=9。(师板书:5+4○4+5)

师(小结):这两个算式结果相等,我们就可以用等号把它们连接,变成一个等式。这个等式里蕴藏着我们今天要探索的规律,猜一猜,是什

么?是不是所有像这样的加法算式都有这样的规律呢?今天我们继续探究。

二、自主探索,学习新知

(一)教学加法交换律

1。出示情境图:体育课,同学们正在操场上做运动。

师:从图中你了解到哪些数学信息?你能提出一些用加法解决的问题吗?

生1:跳绳的有多少人?怎么列式计算?(17+28=45,28+17=45,17+28○28+17)

生2:女生有多少人呢?(23+17○17+23)

师:继续观察这两道算式,你发现了什么?中间可以用什么符号连接?

2。那么,你能再写出几道像这样的等式吗?

(学生写后,同桌互查,指名交流,师相继板书三道等式) 师:这些都是等式吗?怎样验证?这些等式都有什么特点?

3。师:像这样的等式还有很多,咱们能举完吗?(师板书省略号)那么,你能用自己喜欢的方法把自己发现的规律表示出来吗?(学生交流后,再看书自学P56)

提问:通过学习,你知道可以怎样表示?你觉得哪种表示方法最能体现数学简洁明了的特点?(集体反馈并总结,师板书a+b= b+a) 师:这个等式表示什么?(生交流,师板书加法交换律)

4。师:其实,加法交换律和我们并不陌生。357+218,你想到了什么?(生交流验算的依据)

师:那么,你知道为什么调换加数的位置,和不变吗?(看的方向不同,但总数不变)

(二)教学加法结合律 1。课件出示问题:参加活动的一共有多少人?怎样列式计算?(学生交流,师板书:28+17+23)

师:先算什么?(根据学生的回答,师添上小括号)还可以先算什么? (生加括号,并说计算过程)

师:这两道算式结果怎样?可以用什么符号连接?(师板书,生齐读)

2。算一算,下面的○里能填上等号吗?

(45+25)+13○45+(25+13) (36+18)+22○36+(18+22)

3。引导比较,发现规律。

师:比较这几道等式,你发现每组两个算式有什么异同?(同桌讨论后交流)

师根据学生回答进一步追问:什么变了?什么不变? (引导学生抓住不变的三层含义分析相同点)

师(小结):其实三个数相加,改变运算顺序,和不变。

【评析:加法结合律的内容,学生在以往的学习中接触不多,没有太多的感性基础,尽管凭直觉知道左右两边算式结果相等,但对左右两边算式的异同点表述并不是很清楚。这就要求教师要做到心中有数,引导学生

从变与不变的角度去分析。只有层层剥笋,使学生抓住了加法结合律的本质特征,这样在后面的运算律混合练习中才不会混淆不清。】

4。你能照样子再写一道这样的算式吗?

师:既然这样的等式写不完,那么也可以用字母等式来表示这样的规律。如果用字母a、b、c表示三个加数,你能表示出这个规律吗?(学生独立写一写,然后指名板演,师生一起检查这个等式)

师(小结):三个数连加,先把前两个数相加或先把后两个数相加,再与另一个数相加,和不变。这就是加法结合律。(板书课题)

5。学习加法结合律又有什么用呢?(出示如下题目)你能很快口算吗?运用了什么?(学生说口算过程,体会加法结合律的用处) 35+40+60 64+(36+78)18+25+75

【评析:学以致用。如果在学习之后不能使学生很快尝到“甜头”,学生则从心理上就不会完全将新知内化。所以通过快速口算,让学生省略书写过程,只从形式上去感受运用加法结合律带来的好处,强化学习运算律的目标意识。】

三、巩固练习,深化新知

师:今天我们学习了什么?有没有信心接受挑战?

1。下面的等式各用了什么运算律?

①82+0=0+82;

②47+(30+8)=(47+30)+8;

③(84+68)+32=84+(68+32);

④75+(48+25)=(75+25)+48。

2。你能在□里填上合适的数吗?说说你是依据什么填的。 ①6+35=35+□;

②a+204=□+a;

③(45+36)+64=45+(□+□);

④560+(40+c)=(560+□)+ □;

⑤560+(180+440)=(560+ □)+□。

3。完成课本P58第五题,学生独立完成后指名口答。

4。拓展练习。(挑战题)

①64+25+136+75=(64+□)+(25+□);

②30+28+70+72=(□+□)+(□+□);

③5×4=4×□;

④6×4×25=6×(□×□)。

师:加法交换律、结合律对四个数相加、五个数相加适用吗?更多数相加呢?由加法交换律、加法结合律你还能联想到什么?乘法是否也具有这样的运算律?大家的猜想对不对呢?你们课后能像这节课一样去探究验证一下吗?

【评析:练习设计既重视基本知识的训练,又能充分挖掘习题的功能,及时进行拓展训练,培养不同层次学生的思维水平。特别是最后两道乘法式题的练习,引导学生在学习加法运算律基础上去猜想乘法是否也具有这样的运算律,为学生沟通了知识之间的联系,实现了学生思维的可持性发展。】

运算律教学总结5

教材分析

这节课主要教学乘法交换律和结合律进行相关的简便运算,由于学生已有应用加法运算律进行简便计算的基础,所以本课时的主要目标是对“两个数相乘”进行简便计算的教学,以及对简便运算方法的提升。

学情分析

在学习本节课乘法交换律、结合律之前,学生已经学习了加法交换律和结合律,逐步学会了不完全归纳法和用字母表示数学规律,并运用规律进行简便计算。本节课在此基础上,重点让学生经历探索乘法交换律、结合律的过程,并会运用乘法交换律、结合律进行简便计算的方法。在学生日常的自学活动中,重视让学生依据已有的知识和经验自主探索,重视小组的合作与交流,所以学生的理解能力、自学能力和合作能力正逐渐提高,良好的自主学习习惯正在逐渐养成。

教学目标

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。

教学重点和难点

1、引导学生概括乘法交换律、结合律。2、乘法交换律和结合律进行简便。

教学过程

一、创设情境,发现问题

师:同学们喜欢搭积木吗?

生:喜欢

师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?

生:想

师:那好,就让我们一起去探索与发现。

二、探索乘法交换律

播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)

师:你知道图中有多少个小正方体吗?说说自己是怎样想的。

生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。

生:竖着数一排有4个小正方体,一共有5排,4×5=20个。

师(板书5×4=4×5)可以这样写吗?为什么?

生:可以因为积相等,(求的就是一个整体)

师:认真观察这个等式,你能发现什么奥妙吗?

生思考,汇报(数字相同,交换了位置,积不变)

师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?

生:……

师:请你帮淘气举一些这样的例子来验证一下行吗?

生举例验证

师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?

生说师板书:

a×b﹦b×a叫做乘法交换律

师:a.b指的是什么?

[设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。]

三、探索乘法结合律

1、课件2出示情景图(书54页)

师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?

学生独立观察、思考后集体交流。(说说估计的方法)

师:谁估计的准确呢?请同学们在本子上算一算。

(学生独立思考,计算,教师巡视)

师:谁愿意把你的`想法介绍给大家?

生举手汇报,师追问:怎样想的?

师引导从上面、正面观察

上面:(3×5)×4

师:这个算式可以写成(5×3)×4 吗?

生:可以,都是求同一个物体,

生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。

师:出示4×(5×3) 可以这样写吗?

生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。

正面:(4×5)×3

师:你还可以怎样写?根据是什么?

生:(5×4)×3 3×(5×4)

[设计意图:通过对算式的变换,巩固乘法交换律]

师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×4 3×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。

生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。

师:可以写成(3×5)×4 = 3×(5×4)吗?

生思考回答。

[设计意图:通过对算式异同的比较,让学生自己发现规律。]

2、提出假设,举例验证

师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器

(学生在小组内举例交流讨论,教师巡视指导。)

师:谁愿意介绍一下你们举例的情况。

生:……

3、概括规律

师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?

生思考概括

师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?

生说师板书:

(a×b)×c﹦a×(b×c)叫做乘法结合律

四、运用模型,完成练习

1、学生独立完成“练一练”1题。最后运用课件集体订正。

2、运用乘法结合律很快算出38×25×4 42×125×8

生独立完成,小组交流后汇报

3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。

[设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算.对所学的知识通过练习加以巩固运用。]

五、小结:

1、这节课你学到了什么?

2、我们是怎样认识这个好朋友的?

板书设计

运算律:乘法交换律、结合律

a×b﹦b×a (a×b)×c﹦a×(b×c)

运算律教学总结6

本单元的内容有:加法运算定律,包括加法交换律和加法结合律。乘法运算定律,包括乘法交换律、乘法结合律和乘法分配律。

反思教学效果:学生对于加法和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算。基本能够灵活运用。然而对于加法、乘法结合律则运用不是很好,乘法分配律则更为糟糕。细想有以下几个原因:第一,学生现在只是能够认识,弄明白这三个运算定律,还不明白这几个运算定律的作用和意义。(除了少部分思维敏捷的学生之外)第二,学生能正确的分析算式,并正确的运用运算定律,对学生的已有基础提出了不少的考验,如42X25,运用运算定律计算这个算式,很多学生是把25分为20和5,这样即使运用了乘法分配律,但较之把42分成40和2相比,有很大的出入。这主要是因为学生还没有完全形成25X4得100这个重要的因素造成的。这里简单的描述为数学“数感”吧,还有125和8得1000一样。第三,有的学生甚至运用运算定律折腾了一番又回到了原来的算式。

综上所述,解决办法只能是多练,不断的培养学生的数感,在不断的练习过程中,体会应该如何运用运算定律。

运算律教学总结7

1、确实复习课是很难上的一种课型,很容易给人单调、乏味的感觉,学生厌烦,老师没劲。这次的数学课是一节运算律的复习课。班上学生已经基本掌握了运算律的运用。提问时,学生很快回答出加法交换律、加法结合律、乘法交换律、结合律、分配律的字母公式。在学生练习中也证明了学生对基本运算律的运用掌握的不错,只是乘法对加法的分配律掌握的不太好,因此我在复习中增加了一个有趣的小故事,用来帮助学生记忆,事后证明学生掌握的不错。

2、这节课我以学生为主,让学生自己回忆规律、公式,并且对学生自己做得题目也让他们自己分析、讲解、评价。学生参与积极,收到了良好的效果。

3、这节课也有不足之处,学生说的多了,留给学生练习的时间就相对减少了,这节课只是把书上的练习刚好做完,没有时间补充新的题目。今后要想办法尽量弥补这个不足,充分利用时间给学生在课堂上练习的机会。

运算律教学总结8

乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。

以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,提出的问题:学校要组织“六一”活动,我们班要出一个节目,现在要买服装,这些服装共要多少钱?通过两种方法和算式的比较,使学生初步感知乘法分配律。先让学生根据提供的问题,用不同的方法解决,让学生观察。在此基础上,让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?继续为学生提供具有挑战性的研究机会:“请你再写出一些这样的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。

这样既培养了学生的猜想能力,而且培养学生主动探究、发现知识的能力以及验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。为培养学生数学模型思想,我又让学生试着用字母来表示这个规律,较好的培养了学生的抽象思维能力。对于这个规律,不是仅仅满足于学生理解、掌握乘法结合律,同时注重了对乘法结合律的运用,使学生明白学习规律能给我们带来计算上的方便,感受计算方法的灵活多样,培养学生灵活运用知识进行解题的能力,激发了学生的数学学习兴趣。

课堂上我还十分注重合作与交流,多向互动。倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。课堂上虽然成功引导学生发现了定律,但教完之后,在练习过程中还有部分学生掌握不好, 在下节课练习设计上,我力求有针对性,同时也注意知识的延伸。针对平时学生练习中的错误,在判断题中我安排了(25×9)×4=25×4+9×4,让学生通过争论明白当(25×9)×4时用乘法结合律简算;当(25+9)×4时用乘法分配律简算。在连线题目中,我设计了乘法分配律的扩展型101×58;61×2-31×2;35×16+35×83+35。通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。

运算律教学总结9

本节课主要内容是加法的交换律和结合律,并且孩子们在小学阶段已经学过假发的结合律何交换律。所以本节课我以2个问题复习导入。第一个问题:有理数加法法则什么?第二个以四道题导入15+28+5=?13+14+6+7=???50+18+10=?12+7+8+3=,回顾用加法交换律和结合律简便计算。在新授内容出示两组对比题,通过让学生观察、比较、猜想、验证。让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律从而得出结论。课已经上完了,现通过反思,找出不足,从而提高自己的教学水平:

1、提供自主探索的机会本节课以学生身边熟悉的知识点切入,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。通过学生自己提问题,自己解决问题,对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提国自主探索的时间和空间,使学生经理加法运算率产生的形成的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

2、关注学生已有的知识经验。在学习加法运算律之前,学生对加法的运算已有了较多的感性认识,为新知的学习奠定了良好的基础。教学中注意激活学生原有的知识经验,让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、超越。

3、引导学生在体验中感悟数学。教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化运用的认识飞跃,同时也体验到学习数学的乐趣。

不足之处:

1、在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算律。

2、安排这两个运算律教学时采用的都是不完全归纳推理,因此在教学加法结合律时也应该让学生多举些列子,让学生去评价举的列子好不好,让学生自己去发现结合是把可以得出整百整十的数放在一起,而不是随意的乱编。然后进一步分析、比较,发现规律,并先后用符号字母表示出发现的规律。

运算律教学总结10

1、提供自主探索的机会

本节课以学生身边熟悉的情境冬季锻炼项目跳绳、踢毽子为教学的切入点,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。通过学生自己理解题意,自己解决问题,对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提供自主探索的时间和空间,使学生经历加法运算律产生、形成的过程,同时也使学生在学习活动过程中获得成功的体验,增强学生学习数学的信心。

2、关注学生已有的知识经验和生活经验

在学习加法运算律之前,学生对四则运算已有了较多的感性认识,为新知的学习奠定了良好的基础。教学中,我能注意激活学生原有的知识经验,让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、超越。我还充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值,学习数学知识,是为了更好地去服务生活,应用于生活,学习致用。如:在设计练习时,我设计了既符合实际又让学生直观感知计算方法的巧妙运用的题目,使计算既快又对,学生觉得很有成功感,进而增强了学习数学的兴趣.为即将学习简便运算奠定了基础;

3、引导学生在体验中感悟数学

教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象--内化--运用的认识飞跃,同时也体验到学习数学的乐趣。

不足之处:

1、整节课上下来,时间较紧,练习无法保证,此外在用符号表示加法交换律时学生想出的类型很少。

2、在总结、交流加法的结合律时,学生的语言表达能力较差,教师应适当地进行指导和帮助。

3、在本节课的设计中,我只注意了算式之间的比较,而忽略了两个运算定律之间的比较。

69550